Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.327
Filtrar
1.
Molecules ; 29(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38611871

RESUMO

Oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) are endogenous lipids that act as agonists of the peroxisome proliferator-activated receptor α (PPARα). Recently, an interest in the role of these lipids in malignant tumors has emerged. Nevertheless, the effects of OEA and PEA on human neuroblastoma cells are still not documented. Type I interferons (IFNs) are immunomodulatory cytokines endowed with antiviral and anti-proliferative actions and are used in the treatment of various pathologies such as different cancer forms (i.e., non-Hodgkin's lymphoma, melanoma, leukemia), hepatitis B, hepatitis C, multiple sclerosis, and many others. In this study, we investigated the effect of OEA and PEA on human neuroblastoma SH-SY5Y cells treated with IFNß. We focused on evaluating cell viability, cell proliferation, and cell signaling. Co-exposure to either OEA or PEA along with IFNß leads to increased apoptotic cell death marked by the cleavage of caspase 3 and poly-(ADP ribose) polymerase (PARP) alongside a decrease in survivin and IKBα levels. Moreover, we found that OEA and PEA did not affect IFNß signaling through the JAK-STAT pathway and the STAT1-inducible protein kinase R (PKR). OEA and PEA also increased the phosphorylation of p38 MAP kinase and programmed death-ligand 1 (PD-L1) expression both in full cell lysate and surface membranes. Furthermore, GW6471, a PPARα inhibitor, and the genetic silencing of the receptor were shown to lower PD-L1 and cleaved PARP levels. These results reveal the presence of a novel mechanism, independent of the IFNß-prompted pathway, by which OEA and PEA can directly impair cell survival, proliferation, and clonogenicity through modulating and potentiating the intrinsic apoptotic pathway in human SH-SY5Y cells.


Assuntos
Amidas , Endocanabinoides , Etanolaminas , Neuroblastoma , Ácidos Oleicos , Humanos , Neuroblastoma/tratamento farmacológico , Antígeno B7-H1 , Janus Quinases , PPAR alfa , Inibidores de Poli(ADP-Ribose) Polimerases , Fatores de Transcrição STAT , Transdução de Sinais , Apoptose , Ácidos Palmíticos/farmacologia
2.
Nutrition ; 122: 112397, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38479039

RESUMO

OBJECTIVE: This study aimed to evaluate the efficacy and safety of co-micronized palmitoylethanolamide (PEA)/polydatin (PD) in the treatment of abdominal pain symptoms in pediatric patients with irritable bowel syndrome (IBS). METHODS: This was a multicenter trial conducted at three Italian pediatric gastroenterology centers, employing a double-blind, placebo-controlled, parallel-arm design. Participants were ages 10 to 17 y and met Rome IV criteria for pediatric IBS. They were randomly allocated to receive either co-micronized PEA/PD or placebo, administered three times daily in a 1:1 ratio, over a 12-wk period. The study assessed baseline severity using the IBS-Severity Scoring System (IBS-SSS) at enrollment and after 4, 8, and 12 wk of treatment. Abdominal pain frequency was assessed on a scale from 1 to 7 d/wk, while stool consistency was classified using the Bristol Stool Scale (BSS) to categorize various IBS subtypes. The primary outcome was the percentage of patients who achieved complete remission, defined as IBS-SSS score <75 points after 12 wk of therapy. RESULTS: The study involved 70 children with IBS. Of the participants, 34 received co-micronized PEA/PD, and 36 received a placebo. As compared with the placebo group, the co-micronized therapy group had significantly more patients achieving complete remission after 12 wk (P = 0.015), with particular benefit in the IBS-diarrhea subtype (P = 0.01). The treatment group also experienced a significant reduction in abdominal pain intensity and frequency compared with the placebo group. No adverse events were recorded during the study period. CONCLUSIONS: Co-micronized PEA/PD is a safe and effective treatment to treat abdominal pain symptoms in pediatric IBS.


Assuntos
Amidas , Etanolaminas , Glucosídeos , Síndrome do Intestino Irritável , Ácidos Palmíticos , Estilbenos , Humanos , Criança , Síndrome do Intestino Irritável/complicações , Síndrome do Intestino Irritável/tratamento farmacológico , Diarreia/tratamento farmacológico , Resultado do Tratamento , Dor Abdominal/tratamento farmacológico , Dor Abdominal/etiologia , 60410 , Método Duplo-Cego
3.
Nutrients ; 16(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38398813

RESUMO

BACKGROUND: Palmitoylethanolamide (PEA) is an endocannabinoid-like lipid mediator which is naturally produced in the body and found in certain foods. The aim of this study was to assess the effect of a bioavailable formulated form of PEA (Levagen+®) on serum BDNF levels and parameters of cognitive function in healthy adults. METHODS: A randomised double-blinded placebo-controlled cross-over trial was implemented to measure the effects of a 6-week 700 mg/day course of formulated PEA supplementation versus a placebo. Participants (n = 39) completed pre- and post-assessments of a lab-based cognitive test. Serum samples were collected to measure BDNF concentrations using an immunoassay. RESULTS: A significant increase in serum BDNF levels was found following PEA supplementation compared with the placebo (p = 0. 0057, d = 0.62). The cognition test battery demonstrated improved memory with PEA supplementation through better first success (p = 0.142, d = 0.54) and fewer errors (p = 0.0287; d = -0.47) on the Paired Associates Learning test. CONCLUSION: This was the first study to report a direct beneficial effect of Levagen+® PEA supplementation on memory improvement as well as corresponding increases in circulating neurotrophic marker levels. This suggests that formulated PEA holds promise as an innovative and practical intervention for cognitive health enhancement.


Assuntos
Amidas , Fator Neurotrófico Derivado do Encéfalo , Cognição , Etanolaminas , Ácidos Palmíticos , Adulto , Humanos , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego
4.
Cell Mol Life Sci ; 81(1): 85, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345762

RESUMO

The pathogenesis of renal calcium-oxalate (CaOx) stones is complex and influenced by various metabolic factors. In parallel, palmitic acid (PA) has been identified as an upregulated lipid metabolite in the urine and serum of patients with renal CaOx stones via untargeted metabolomics. Thus, this study aimed to mechanistically assess whether PA is involved in stone formation. Lipidomics analysis of PA-treated renal tubular epithelial cells compared with the control samples revealed that α-linoleic acid and α-linolenic acid were desaturated and elongated, resulting in the formation of downstream polyunsaturated fatty acids (PUFAs). In correlation, the levels of fatty acid desaturase 1 and 2 (FADS1 and FADS2) and peroxisome proliferator-activated receptor α (PPARα) in these cells treated with PA were increased relative to the control levels, suggesting that PA-induced upregulation of PPARα, which in turn upregulated these two enzymes, forming the observed PUFAs. Lipid peroxidation occurred in these downstream PUFAs under oxidative stress and Fenton Reaction. Furthermore, transcriptomics analysis revealed significant changes in the expression levels of ferroptosis-related genes in PA-treated renal tubular epithelial cells, induced by PUFA peroxides. In addition, phosphatidyl ethanolamine binding protein 1 (PEBP1) formed a complex with 15-lipoxygenase (15-LO) to exacerbate PUFA peroxidation under protein kinase C ζ (PKC ζ) phosphorylation, and PKC ζ was activated by phosphatidic acid derived from PA. In conclusion, this study found that the formation of renal CaOx stones is promoted by ferroptosis of renal tubular epithelial cells resulting from PA-induced dysregulation of PUFA and phosphatidic acid metabolism, and PA can promote the renal adhesion and deposition of CaOx crystals by injuring renal tubular epithelial cells, consequently upregulating adhesion molecules. Accordingly, this study provides a new theoretical basis for understanding the correlation between fatty acid metabolism and the formation of renal CaOx stones, offering potential targets for clinical applications.


Assuntos
Cálcio , Ferroptose , Humanos , Oxalato de Cálcio/química , PPAR alfa , Ácidos Graxos Insaturados , Ácidos Palmíticos
5.
J Transl Med ; 22(1): 82, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245790

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a liver disorder characterized by the ac-cumulation of fat in hepatocytes without alcohol consumption. Mitochondrial dysfunction and endoplasmic reticulum (ER) stress play significant roles in NAFLD pathogenesis. The unfolded protein response in mitochondria (UPRmt) is an adaptive mechanism that aims to restore mitochondrial protein homeostasis and mitigate cellular stress. This study aimed to investigate the effects of ( +)-Lipoic acid (ALA) on UPRmt, inflammation, and oxidative stress in an in vitro model of NAFLD using HepG2 cells treated with palmitic acid and oleic acid to induce steatosis. RESULTS: Treatment with palmitic and oleic acids increased UPRmt-related proteins HSP90 and HSP60 (heat shock protein), and decreased CLPP (caseinolytic protease P), indicating ER stress activation. ALA treatment at 1 µM and 5 µM restored UPRmt-related protein levels. PA:OA (palmitic acid:oleic acid)-induced ER stress markers IRE1α (Inositol requiring enzyme-1), CHOP (C/EBP Homologous Protein), BIP (Binding Immunoglobulin Protein), and BAX (Bcl-2-associated X protein) were significantly reduced by ALA treatment. ALA also enhanced ER-mediated protein glycosylation and reduced oxidative stress, as evidenced by decreased GPX1 (Glutathione peroxidase 1), GSTP1 (glutathione S-transferase pi 1), and GSR (glutathione-disulfide reductase) expression and increased GSH (Glutathione) levels, and improved cellular senescence as shown by the markers ß-galactosidase, γH2Ax and Klotho-beta. CONCLUSIONS: In conclusion, ALA ameliorated ER stress, oxidative stress, and inflammation in HepG2 cells treated with palmitic and oleic acids, potentially offering therapeutic benefits for NAFLD providing a possible biochemical mechanism underlying ALA beneficial effects.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Ácido Tióctico , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Ácido Tióctico/farmacologia , Ácido Tióctico/uso terapêutico , Ácido Tióctico/metabolismo , Endorribonucleases/metabolismo , Ácido Oleico/farmacologia , Ácido Oleico/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas , Estresse Oxidativo , Estresse do Retículo Endoplasmático , Hepatócitos/patologia , Senescência Celular , Inflamação/patologia , Ácidos Palmíticos/metabolismo , Ácidos Palmíticos/farmacologia , Fígado/patologia , Ácido Palmítico/farmacologia , Ácido Palmítico/metabolismo
6.
BMC Med ; 22(1): 33, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273283

RESUMO

BACKGROUND: The endocannabinoid (eCB) system and the serotonin (5-HT) are both implicated in the severity of the depression. 5-HT is synthesized from the amino acid tryptophan (Trp), which is also a precursor for kynurenine (Kyn) whose production is increased at the expense of 5-HT in depressed patients. No clinical studies have investigated the crosstalk between the eCB system and the Trp/5-HT/Kyn pathways. Here, we hypothesized that the eCB system is associated with an enhanced Kyn production in relation to the severity of depressive symptoms. METHODS: Eighty-two subjects (51 patients with a diagnosis of depressive disorder (DSM-5) and 31 healthy volunteers), were assessed with the Montgomery-Åsberg Depression Rating Scale (MADRS), Beck Depression Scale, and Global Clinical Impression. Serum concentrations of eCBs (N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG)); structurally related fatty acyl compounds 2-oleoylglycerol (2-OG), oleoylethanolamide (OEA), and palmitoylethanolamide (PEA); Trp, Kyn, Kyn/Trp ratio (an index of Trp degradation into Kyn) and 5-HT were also determined. RESULTS: Following a principal component analysis including the severity of depression, Kyn and the Kyn/Trp ratio appear to be directly associated with 2-AG, AEA, and PEA. Interestingly, these biomarkers also permitted to distinguish the population into two main clusters: one of individuals having mild/severe depressive symptoms and the other with an absence of depressive symptoms. Using parametric analysis, higher serum levels of 2-AG, Kyn, and the ratio Kyn/Trp and lower levels of Trp and 5-HT were found in individuals with mild/severe depressive symptoms than in those without depressive symptoms. While in asymptomatic people, PEA was directly associated to Trp, and OEA indirectly linked to 5-HT, in individuals with depressive symptoms, these correlations were lost, and instead, positive correlations between AEA and 2-AG, PEA and AEA, and PEA vs 2-AG and OEA concentrations were found. CONCLUSIONS: Parametric and non-parametric analyses suggest a possible association between eCBs, tryptophan/kynurenine biomarkers, and severity of depression, confirming a likely interplay among inflammation, stress, and depression. The enhanced relationships among the biomarkers of the 2-AG and AEA pathways and related lipids seen in individuals with depressive symptoms, but not in asymptomatics, suggest an altered metabolism of the eCB system in depression.


Assuntos
Amidas , Etanolaminas , Cinurenina , Ácidos Palmíticos , Triptofano , Humanos , Triptofano/metabolismo , Cinurenina/metabolismo , Depressão/diagnóstico , Endocanabinoides , Serotonina , Biomarcadores
7.
Biochim Biophys Acta Biomembr ; 1866(3): 184270, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38211647

RESUMO

Transition of Mycolicibacterium smegmatis (Msm) and Mycobacterium tuberculosis to dormancy in vitro is accompanied by an accumulation of free methylated forms of porphyrins (tetramethyl coproporphyrin - TMC) localized in the cell wall of dormant bacteria. A study of the fluorescence anisotropy of BODIPY based fluorescent probes on individual cell level using confocal microscope revealed significant changes in this parameter for BODIPY FL C16 from 0.05 to 0.22 for vegetative and dormant Msm cells correspondingly. Similarly, the increase of TMC concentration in vegetative Msm cells grown in the presence of 5-aminolevulinic acid (a known inducer of porphyrin synthesis) resulted in an increase of BODIPY FL C16 anisotropy. These changes in TMC concentration and membrane fluidity were accompanied by an inhibition of the activity of the respiratory chain measured by oxygen consumption and a reduction of the DCPIP redox acceptor. During the first 8 h of the reactivation of the dormant Msm cells, the porphyrin content and probe fluorescent anisotropy returned to the level for vegetative bacteria. We suggested that upon transition to dormancy, an accumulation of TMC in membranes leads to a decrease in membrane fluidity, resulting in an inhibition of the respiratory chain activity. However, direct interactions of TMC with membrane bound enzymes cannot also be excluded. This, in turn, may result in the down regulation of many metabolic energy-dependent reactions as a part of mechanisms accompanying the transition to a hypometabolic state of mycobacteria.


Assuntos
Compostos de Boro , Porfirinas , Transporte de Elétrons , Fluidez de Membrana , Ácidos Palmíticos/metabolismo , Mycobacterium smegmatis/metabolismo
8.
Arch Biochem Biophys ; 752: 109883, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38211638

RESUMO

Free fatty acids, like palmitic acid (PA), and xanthophyll pigments, like lutein (LUT) are the natural membrane compounds in plants. To study the effect of PA on LUT and their organization, a model membrane of 1,2-dimyristoyl-sn-glycerol-3-phosphocholine (DMPC) enriched with 2 mol% PA and 1 mol% LUT was formed. Molecular mechanisms underlying the interaction between these two compounds were examined with application of molecular spectroscopy techniques, e.g., visible spectroscopy, electron paramagnetic resonance and Fourier transform infrared. We determined the monomeric/dimeric organization of LUT in the membrane. We proved that the presence of PA in the lipid phase facilitated and stabilized the formation of LUT structures in the membrane. Lutein with PA did not form strong molecular aggregates like H- and J-structures. We presented the simplified model membrane that could be a suitable representation of the physiological process of de-esterification of PA from LUT appearing in natural biomembranes in humans.


Assuntos
Luteína , Xantofilas , Humanos , Luteína/farmacologia , Luteína/química , Espectroscopia de Ressonância de Spin Eletrônica , Ácidos Palmíticos , Lipídeos , Bicamadas Lipídicas/química , Dimiristoilfosfatidilcolina/química
9.
Eur J Pharmacol ; 964: 176224, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38110141

RESUMO

Liver ischemia/reperfusion (I/R) injury commonly occurs after various liver surgeries. Adelmidrol, an N- palmitoylethanolamide analog, has anti-inflammatory, anti-oxidant, and anti-injury properties. To investigate whether adelmidrol could reduce liver I/R injury, we established a mouse of liver I/R injury and an AML12 cell hypoxia-reoxygenation model to perform experiments using multiple indicators. Serum ALT and AST levels, and H&E staining were used to measure liver damage; MDA content, superoxide dismutase and glutathione activities, and dihydroethidium staining were used to measure oxidative stress; mRNA expression levels of tumor necrosis factor-α, interleukin (IL)-1ß, IL-6, MCP-1, and Ly6G staining were used to measure inflammatory response; and protein expression of Bax, Bcl-2, C-caspase3, and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling staining were used to measure apoptosis. The experimental results showed that adelmidrol reduced liver I/R injury. In addition, adelmidrol pretreatment elevated AML12 cell activity and reduced I/R-and H/R-induced apoptosis, inflammatory injury, and oxidative stress. ML385, an inhibitor of nuclear factor erythroid2-related factor 2 (Nrf2), reverses liver I/R injury attenuated by adelmidrol. These results suggest that adelmidrol ameliorates liver I/R injury by activating the Nrf2 signaling pathway.


Assuntos
Ácidos Dicarboxílicos , Etanolaminas , Fígado , Fator 2 Relacionado a NF-E2 , Ácidos Palmíticos , Traumatismo por Reperfusão , Animais , Camundongos , Antioxidantes/uso terapêutico , Apoptose , Ácidos Dicarboxílicos/uso terapêutico , Interleucina-1beta/metabolismo , Fígado/irrigação sanguínea , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Ácidos Palmíticos/uso terapêutico , Traumatismo por Reperfusão/tratamento farmacológico , Transdução de Sinais
10.
Sci Rep ; 13(1): 21791, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065989

RESUMO

India has occupied third position in biscuit manufacturing with an average production of 1.95 million tonnes. The major ingredients in biscuit manufacturing are refined wheat flour, sugar and fat. Fat to be used must be chosen carefully as it affects quality of final product in terms of fatty acid composition and oxidative stability. Therefore, the present work was planned to study fatty acid profile of highly consumed baked products of biscuit family such as biscuits and cookies available in market. The study was carried out to do fatty acid profiling of a range of highly consumed baked products of biscuit family as a primary objective and also, to determine oxidative stability of these products by analysing peroxide value and free fatty acid content. The most commonly consumed packaged and unpackaged bakery products were selected and were bought from the local market of Ludhiana city on the basis of a survey conducted on 200 subjects. The selected products were analysed for fatty acid composition and oxidative stability using standard methods. Fatty acid profiling of 22 bakery products of biscuit family was done. Palmitic acid was the most abundant among all fatty acids in packaged and unpackaged samples. Peroxide value of all the products even after storage period of three months was found below the permissible limits (< 10 meq/kg). Free fatty acids value of all the products also did not cross acceptable level of 0.5 percent. Out of total selected eight brands, six were national and two were international. Amount of palmitic acid was higher in the products belonging to local brands.


Assuntos
Ácidos Graxos , Farinha , Humanos , Farinha/análise , Triticum , Peróxidos , Ácidos Palmíticos , Estresse Oxidativo
12.
Nutrients ; 15(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38004155

RESUMO

We investigated the influence of varying dietary polyunsaturated fatty acid (PUFA)/saturated fatty acids (SFA) ratios on insulin resistance (IR), fatty acid metabolism, N-acylethanolamine (NAE) bioactive metabolite levels, and mitochondrial function in lean and obese Zucker rats in a model designed to study obesity and IR from overnutrition. We provided diets with 7% fat (w/w), with either a low PUFA/SFA ratio of 0.48, predominantly comprising palmitic acid (PA), (diet-PA), or the standard AIN-93G diet with a high PUFA/SFA ratio of 3.66 (control, diet-C) over eight weeks. In obese rats on diet-PA versus diet-C, there were reductions in plasma triglycerides, cholesterol, glucose, insulin concentrations and improved muscle mitochondrial function, inflammatory markers and increased muscle N-oleoylethanolamine (OEA), a bioactive lipid that modulates lipid metabolism and metabolic flexibility. Elevated palmitic acid levels were found exclusively in obese rats, regardless of their diet, implying an endogenous production through de novo lipogenesis rather than from a dietary origin. In conclusion, a reduced dietary PUFA/SFA ratio positively influenced glucose and lipid metabolism without affecting long-term PA tissue concentrations. This likely occurs due to an increase in OEA biosynthesis, improving metabolic flexibility in obese rats. Our results hint at a pivotal role for balanced dietary PA in countering the effects of overnutrition-induced obesity.


Assuntos
Ácidos Graxos , Resistência à Insulina , Ratos , Animais , Ácidos Graxos/metabolismo , Ratos Zucker , Gorduras na Dieta/farmacologia , Ácidos Graxos Insaturados/metabolismo , Obesidade/metabolismo , Dieta , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos , Glucose , Ácidos Palmíticos
13.
Commun Biol ; 6(1): 736, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460609

RESUMO

Fetal alcohol spectrum disorders (FASD) show behavioral problems due to prenatal alcohol exposure (PAE). A previous study reports changes in gene expressions linked to fatty acid (FA) metabolism in the cerebral cortex of the PAE mouse model. We find an increase of palmitic acid and arachidonic acid in phospholipid in the cerebral cortex of PAE at postnatal day 30. The increase of palmitic acid is consistent with increase of the producing enzyme, Fasn (fatty acid synthase). Decrease of 26:6 FA is also consistent with the increase of the enzyme which uses 26:6 as a substrate for making very long chain FAs, Elovl4 (elongation of very long chain fatty acids protein 4). However, there is no increase in the elongated products. Rather, lipid droplets (LDs) accumulated in the brain. Although FA-associated metabolic measurements are not affected by PAE, the abundance of FA-related gut microbiota is altered. This suggests that the gut microbiome could serve as a tool to facilitate uncovering the brain pathophysiology of FASD and a potential target to mitigate neurobehavioral problems.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Efeitos Tardios da Exposição Pré-Natal , Humanos , Camundongos , Animais , Feminino , Gravidez , Transtornos do Espectro Alcoólico Fetal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Modelos Animais de Doenças , Ácidos Palmíticos , Ácidos Graxos
14.
Proteins ; 91(11): 1525-1534, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37462340

RESUMO

Fatty acid binding proteins (FABPs) are responsible for the long-chain fatty acids (FAs) transport inside the cell. However, despite the years, since their structure is known and the many studies published, there is no definitive answer about the stages of the lipid entry-exit mechanism. Their structure forms a ß -barrel of 10 anti-parallel strands with a cap in a helix-turn-helix motif, and there is some consensus on the role of the so-called portal region, involving the second α -helix from the cap ( α 2), ß C- ß D, and ß E- ß F turns in FAs exchange. To test the idea of a lid that opens, we performed a soaking experiment on an h-FABP crystal in which the cap is part of the packing contacts, and its movement is strongly restricted. Even in these conditions, we observed the replacement of palmitic acid by 2-Bromohexadecanoic acid (Br-palmitic acid). Our MD simulations reveal a two-step lipid entry process: (i) The travel of the lipid head through the cavity in the order of tens of nanoseconds, and (ii) The accommodation of its hydrophobic tail in hundreds to thousands of nanoseconds. We observed this even in the cases in which the FAs enter the cavity by their tail. During this process, the FAs do not follow a single trajectory, but multiple ones through which they get into the protein cavity. Thanks to the complementary views between experiment and simulation, we can give an approach to a mechanistic view of the exchange process.


Assuntos
Proteínas de Ligação a Ácido Graxo , Simulação de Dinâmica Molecular , Proteínas de Ligação a Ácido Graxo/química , Proteínas de Ligação a Ácido Graxo/metabolismo , Raios X , Conformação Proteica , Ácidos Palmíticos/metabolismo , Lipídeos , Ácidos Graxos
15.
J Control Release ; 359: 161-174, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37182806

RESUMO

Glioblastoma multiforme (GBM) is the deadliest brain tumor with a poor prognosis and limited therapeutic options. Temozolomide (TMZ) is the first-line chemotherapeutic agent used for the treatment of GBM; however, it suffers from several limitations, including short half-life, rapid metabolism, <1% brain bioavailability, methyl guanine methyl transferase (MGMT) based chemoresistance, and hematological toxicities. Several approaches have been adopted to overcome these limitations, particularly by using nanotechnology-based systems, but its physicochemical properties make TMZ challenging to load into these nanocarriers. In the current research, we conjugated TMZ with different fatty acids, i.e., linoleic acid (LA), oleic acid (OA), and palmitic acid (PA), to obtain TMZ-fatty acid conjugates, which are comparatively hydrophobic, less prone to degradation and potent. These conjugates were thoroughly characterized using 1H NMR spectroscopy, high-resolution mass spectrometry (HR-MS), and reverse phase-high performance liquid chromatography (RP-HPLC). The synthesized conjugates, namely Temozolomide-oleic acid (TOA,6R1), Temozolomide-linoleic acid (TLA, 6R2), and Temozolomide-palmitic acid (TPA, 6R3), showed an IC50 of 101.4, 67.97, and 672.04 µM, respectively in C6 cells and 428.257, 366.43 and 413.69 µM, respectively in U87-MG cells. On the other hand, the free TMZ showed an IC50 of >1000 µM and 564.23 µM in C6 and U87-MG, respectively. Further, the in vivo efficacy of the TMZ-fatty acid conjugates was evaluated in the C6-induced orthotropic rat glioblastoma model, wherein the TMZ-fatty acid conjugate showed improved survival rate (1.6 folds) and overall health of the animals. Collectively, the conjugation of fatty acids with TMZ improves its anticancer potential against glioblastoma multiforme (GBM).


Assuntos
Neoplasias Encefálicas , Glioblastoma , Ratos , Animais , Temozolomida/uso terapêutico , Glioblastoma/metabolismo , Antineoplásicos Alquilantes/uso terapêutico , Antineoplásicos Alquilantes/farmacologia , Ácidos Graxos , Linhagem Celular Tumoral , Neoplasias Encefálicas/metabolismo , Ácidos Linoleicos/uso terapêutico , Ácidos Palmíticos/uso terapêutico , Ácidos Oleicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Int J Mol Med ; 51(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36928181

RESUMO

Increased levels of serum free fatty acids (FFAs) are closely associated with microvascular dysfunction. In our previous study, a coronary microvascular dysfunction (CMD) model was successfully established via lipid infusion to increase the levels of serum FFAs in mice. However, the underlying mechanisms remained poorly understood. Therefore, the aim of the present study was to explore the mechanism underlying FFA­induced CMD. A CMD mouse model was established via lipid combined with heparin infusion for 6 h to increase the concentration of serum FFAs. Following the establishment of the model, the coronary flow reserve (CFR), extent of leukocyte activation and cardiac microvascular structures were assessed in the mice. Cardiac microvascular endothelial cells (CMECs) were treated with different concentrations of palmitic acid and cell viability was evaluated. Changes in the expression levels of AMP­activated protein kinase (AMPK), Krüppel­like factor 2 (KLF2) and endothelial nitric oxide synthase (eNOS) were identified by immunohistochemical and western blot analyses. Experiments using AMPK activator, KLF2 overexpression plasmid, small interfering RNAs and nicorandil were subsequently designed to investigate the potential involvement of the AMPK/KLF2/eNOS signaling pathway. These experiments revealed that FFAs could induce CMD in mice, which was characterized by reduced CFR (1.89±0.37 vs. 2.74±0.30) and increased leukocyte adhesion (4,350±1,057.5 vs. 11.8±5.4 cells/mm2) compared with the control mice. CD11b expression and intracellular reactive oxygen species (ROS) levels were increased in CMD model mice compared with control mice. Serum TNF­α and IL­6 levels were higher in the model group than in the control group. Transmission electron microscopy revealed that CMECs in heart tissues of model mice were severely swollen. In addition, palmitic acid decreased CMEC viability and increased ROS production in a dose­dependent manner. Notably, the AMPK/KLF2/eNOS signaling pathway was demonstrated to be suppressed by FFAs both in vivo and in vitro. Activation of this axis with AMPK activator, KLF2 overexpression plasmid or nicorandil restored the CFR in CMD model mice, inhibited oxidative stress and increased CMEC viability. Taken together, the results of the present study demonstrated that FFAs could induce CMD via inhibition of the AMPK/KLF2/eNOS signaling pathway, whereas activation of this pathway led to the alleviation of FFA­induced CMD, which may be a therapeutic option for CMD.


Assuntos
Células Endoteliais , Ácidos Graxos não Esterificados , Microcirculação , Miocárdio , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Células Endoteliais/metabolismo , Ácidos Graxos não Esterificados/efeitos adversos , Ácidos Graxos não Esterificados/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Nicorandil , Óxido Nítrico Sintase Tipo III/metabolismo , Ácidos Palmíticos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Microcirculação/fisiologia , Miocárdio/patologia
17.
ScientificWorldJournal ; 2023: 9919814, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36890980

RESUMO

In this study, Arthrospira fusiformis previously isolated from Lake Mariout (Alexandria, Egypt) was cultivated in the laboratory using a medium for pharmaceutical grade Arthrospira, named as Amara and Steinbüchel medium. Hot water extract of the Egyptian Spirulina was prepared by autoclaving dried biomass in distilled water at 121°C for 15 min. This algal water extract was analyzed by GC-MS to evaluate its volatile compounds and fatty acids composition. The antimicrobial activity of phycobiliprotein extract from Arthrospira fusiformis using phosphate buffer was evaluated against thirteen microbial strains (two Gram-positive bacteria, eight Gram-negative bacteria, one yeast, and two filamentous fungi). The major components of fatty acids in the hot extract of Egyptian A. fusiformis were hexadecanoic acid (palmitic acid, 55.19%) and octadecanoic acid (stearic acid, 27.14%). The main constituents of its volatile compounds were acetic acid (43.33%) and oxalic acid (47.98%). The most potent antimicrobial effect of phycobiliprotein extract was obtained against two Gram-negative bacteria Salmonella typhi and Proteus vulgaris, filamentous fungus Aspergillus niger, and the pathogenic yeast Candida albicans (all of which showed MIC values of 58.1 µg/ml). Escherichia coli and Salmonella typhimurium come second in their susceptibility to the phycobiliprotein extract from Arthrospira fusiformis and Serratia marcescens and Aspergillus flavus are the least in susceptibility, with MIC values of 116.2 and 232.5 µg/ml, respectively, while phycobiliprotein extract has no antibacterial effect on methicillin-resistant as well as susceptible Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Shigella sonnei. These findings confirmed the nutritional value of Egyptian A. fusiformis isolated from Lake Mariout and suggest the potential use of this strain as an ingredient in the cooking of some foods to increase the level of stearic acid and palmitic acid. Moreover, its effective antibacterial activities against some important and highly resistant to antibiotics bacterial pathogens in addition to its antifungal effects recommend the therapeutic use of its biomass.


Assuntos
Spirulina , Egito , Ácidos Graxos/farmacologia , Lagos , Antifúngicos/farmacologia , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Leveduras , Candida albicans , Água/farmacologia , Ácidos Esteáricos/farmacologia , Ácidos Palmíticos/farmacologia , Testes de Sensibilidade Microbiana
18.
J Periodontal Res ; 58(3): 575-587, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36807310

RESUMO

BACKGROUND AND OBJECTIVE: G protein-coupled receptor 40 (GPR40) is a receptor for medium- and long-chain free fatty acids (FFAs). GPR40 activation improves type 2 diabetes mellitus (T2DM), metabolic syndrome (MetS), and the complications of T2DM and MetS. Periodontitis, a common oral inflammatory disease initiated by periodontal pathogens, is another complication of T2DM and MetS. Since FFAs play a key role in the pathogenesis of MetS which exacerbates periodontal inflammation and GPR40 is a FFA receptor with anti-inflammatory properties, it is important to define the role of GPR40 in MetS-associated periodontitis. MATERIALS AND METHODS: We induced MetS and periodontitis by high-fat diet and periodontal injection of lipopolysaccharide (LPS), respectively, in wild-type and GPR40-deficient mice and determined alveolar bone loss and periodontal inflammation using micro-computed tomography, histology, and osteoclast staining. We also performed in vitro study to determine the role of GPR40 in the expression of proinflammatory genes. RESULTS: The primary outcome of the study is that GPR40 deficiency increased alveolar bone loss and enhanced osteoclastogenesis in control mice and the mice with both MetS and periodontitis. GPR40 deficiency also augmented periodontal inflammation in control mice and the mice with both MetS and periodontitis. Furthermore, GPR40 deficiency led to increased plasma lipids and insulin resistance in control mice but had no effect on the metabolic parameters in mice with MetS alone. For mice with both MetS and periodontitis, GPR40 deficiency increased insulin resistance. Finally, in vitro studies with macrophages showed that deficiency or inhibition of GPR40 upregulated proinflammatory genes while activation of GPR40 downregulated proinflammatory gene expression stimulated synergistically by LPS and palmitic acid. CONCLUSION: GPR40 deficiency worsens alveolar bone loss and periodontal inflammation in mice with both periodontitis and MetS, suggesting that GPR40 plays a favorable role in MetS-associated periodontitis. Furthermore, GPR40 deficiency or inhibition in macrophages further upregulated proinflammatory and pro-osteoclastogenic genes induced by LPS and palmitic acid, suggesting that GPR40 has anti-inflammatory and anti-osteoclastogenic properties.


Assuntos
Perda do Osso Alveolar , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Síndrome Metabólica , Periodontite , Camundongos , Animais , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Perda do Osso Alveolar/patologia , Diabetes Mellitus Tipo 2/complicações , Lipopolissacarídeos/efeitos adversos , Microtomografia por Raio-X , Periodontite/metabolismo , Inflamação , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Anti-Inflamatórios , Ácidos Graxos não Esterificados , Ácidos Palmíticos/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...